40,920 research outputs found

    DNA adducts in fish following an oil spill exposure

    Get PDF
    On 12 December 1999, one third of the load of the Erika tanker, amounting to about 10,000 t crude oil flowed into sea waters close to the French Atlantic Coast. This oil contained polycyclic aromatic compounds (PAC) that are known to be genotoxic. Genotoxic effects induce DNA adducts formation, which can thus be used as pollution biomarkers. Here, we assessed the genotoxic impact of the “Erika” oil spill by DNA adducts detection in the liver of immature fishes (Solea solea) from four locations of the French Brittany coasts. Two months after the spill, a high amount of DNA adducts was found in samples from all locations, amounting to 92–290 DNA adduct per 109 nucleotides. Then total DNA adduct levels decreased to reach about 50 adducts per 109 nucleotides nine months after the spill. In vitro experiments using human cell cultures and fish liver microsomes evidence the genotoxicity of the Erika fuel. They also prove the formation of reactive species able to create DNA adducts. Furthermore, in vitro and in vivo DNA adducts fingerprints are similar, thus confirming that DNA adducts are a result of the oil spill

    Mitosene-DNA adducts. Characterization of two major DNA monoadducts formed by 1,10-bis(acetoxy)-7-methoxymitosene upon reductive activation

    Get PDF
    Reductive activation of racemic 1,10-bis(acetoxy)-7-methoxymitosene WV15 in the presence of DNA, followed by enzymatic digestion and HPLC analysis, revealed the formation of various DNA adducts. Reduction is a necessary event for adduct formation to occur. This reductive activation was performed under hypoxic conditions in various ways:  (1) chemically, using a 2-fold excess of sodium dithionite (Na2S2O4), (2) enzymatically using NADH-cytochrome c reductase, (3) electrochemically on a mercury pool working electrode, and (4) catalytically, using a H2/PtO2 system. Five different mitosene−DNA adducts were detected. These adducts were also present when poly(dG-dC) was used instead of DNA, but were absent with poly(dA-dT). All were shown to be adducts of guanine. Reduction of 1,10-dihydroxymitosene WV14 in the presence of DNA did not result in detectable adduct formation, demonstrating the importance of good leaving groups for efficient adduct formation by these mitosenes. Finally, two of the adducts were isolated and their structures elucidated, using mass spectrometry, 1H NMR and circular dichroism (CD). The structures were assigned as the diastereoisomers N2-(1‘ ‘-n-hydroxymitosen-10‘ ‘-yl), 2‘-deoxyguanosine (n = α or β). These type of adducts, in which the mitosene C-10 is covalently bonded to the N-2 of a guanosylic group, are different from the well-known mitomycin C 2‘-deoxyguanosine monoadducts, that is linked via the mitomycin C C-1 position, demonstrating that the order of reactivity of the C-1 and C-10 in these mitosenes is reversed, as compared to mitomycin C. The 7-methoxy substituent of WV15 is a likely factor causing this switch. Evidence is presented that the 7-substituent of mitosenes also influences their DNA alkylation site. Adducts 4 and 5 represent the first isolated and structurally characterized covalent adducts of DNA and a synthetic mitosene

    Pyrimido[1,2-a]-purin-10(3H)-one, M(1)G, is less prone to artifact than base oxidation

    Get PDF
    Pyrimido[1,2-a]-purin-10(3H)-one (M(1)G) is a secondary DNA damage product arising from primary reactive oxygen species (ROS) damage to membrane lipids or deoxyribose. The present study investigated conditions that might lead to artifactual formation or loss of M(1)G during DNA isolation. The addition of antioxidants, DNA isolation at low temperature or non-phenol extraction methods had no statistically significant effect on the number of M(1)G adducts measured in either control or positive control tissue samples. The number of M(1)G adducts in nuclear DNA isolated from brain, liver, kidney, pancreas, lung and heart of control male rats were 0.8, 1.1, 1.1, 1.1, 1.8 and 4.2 M(1)G/10(8) nt, respectively. In rat liver tissue, the mitochondrial DNA contained a 2-fold greater number of M(1)G adducts compared with nuclear DNA. Overall, the results from this study demonstrated that measuring M(1)G is a reliable way to assess oxidative DNA damage because the number of M(1)G adducts is significantly affected by the amount of ROS production, but not by DNA isolation procedures. In addition, this study confirmed that the background number of M(1)G adducts reported in genomic DNA could have been overestimated by one to three orders of magnitude in previous reports

    Investigation of NQO1 genetic polymorphism, NQO1 gene expression and PAH-DNA adducts in ESCC. A case-control study from Iran

    Get PDF
    We evaluated the effect of NQO1 genetic variation on PAH-DNA adducts in esophageal squamous cell carcinoma (ESCC) in northeast Iran. Golestan Province in northeast of Iran has one of the highest esophageal cancer incidences in the world. The study included 93 ESCC cases and 50 control individuals who were seen at the clinical cancer center in Golestan province. NQO1 C609T genotypes were determined by PCR-RFLP analysis. NQO1 gene expression in tissue samples was determined by quantitative real-time PCR. Immunohistochemical techniques were used to detect PAH-DNA adducts in ESCC and normal esophageal tissues. The distributions of NQO1 genetic polymorphism between cases and the control group were not significantly different. NQO1 gene expression was not higher in tumor tissues than in normal esophageal tissues adjacent to the ESCC; expression was higher in tumor tissues that had the NQO1 T allele. NQO1 gene expression was high in normal esophageal tissues. The level of PAH-DNA adducts was significantly higher in ESCC tissues of cases than in normal tissues adjacent to tumor tissues and in normal esophageal tissues of healthy controls. There were no significant differences between the adduct levels of normal esophageal tissues of patients and controls. There was also no significant relationship between cigarette smoking and PAH-DNA adducts. We concluded that PAHs are a risk factor for ESCC and that PAH-DNA adducts have potential as a biomarker for risk of ESCC

    Covalent binding studies on the 14C-labeled antitumour compound 2,5-bis(1-aziridinyl)-1,4-benzoquinone. Involvement of semiquinone radical in binding to DNA, and binding to proteins and bacterial macromolecules in situ

    Get PDF
    2,5-Bis(1-aziridinyl)-1,4-benzoquinone (BABQ) is a compound from which several antitumour drugs are derived, such as Trenimone, Carboquone and Diaziquone (AZQ). The mechanism of DNA binding of BABQ was studied using 14C-labeled BABQ and is in agreement with reduction of the quinone moiety and protonation of the aziridine ring, followed by ring opening and alkylation. The one-electron reduced (semiquinone) form of BABQ alkylates DNA more efficiently than two-electron reduced or non reduced BABQ. Covalent binding to polynucleotides did not unambiguously reveal preference for binding to specific DNA bases. Attempts to elucidate further the molecular structure of DNA adducts by isolation of modified nucleosides from enzymatic digests of reacted DNA failed because of instability of the DNA adducts. The mechanism of covalent binding to protein (bovine serum albumin, BSA) appeared to be completely different from that of covalent binding to DNA. Binding of BABQ to BSA was not enhanced by reduction of the compound and was pH dependent in a way that is opposite to that of DNA alkylation. Glutathione inhibits binding of BABQ to BSA and forms adducts with BABQ in a similar pH dependence as the protein binding. The aziridine group therefore does not seem to be involved in the alkylation of BSA. Incubation of intact E. coli cells, which endogenously reduce BABQ, resulted in binding to both DNA and RNA, but also appreciable protein binding was observed

    An organometallic compound which exhibits a DNA topology-dependent one-stranded intercalation mode

    Get PDF
    Understanding how small molecules interact with DNA is essential since it underlies a multitude of pathological conditions and therapeutic interventions. Many different intercalator compounds have been studied because of their activity as mutagens or drugs, but little is known regarding their interaction with nucleosomes, the protein-packaged form of DNA in cells. Here, using crystallographic methods and molecular dynamics simulations, we discovered that adducts formed by [(η⁶-THA)Ru(ethylenediamine)Cl][PF₆] (THA = 5,8,9,10-tetrahydroanthracene; RAED-THA-Cl[PF₆]) in the nucleosome comprise a novel one-stranded intercalation and DNA distortion mode. Conversely, the THA group in fact remains solvent exposed and does not disrupt base stacking in RAED-THA adducts on B-form DNA. This newly observed DNA binding mode and topology dependence may actually be prevalent and should be considered when studying covalently binding intercalating compounds

    Inflammation, DNA-centered radicals, and oxidative genotoxicity: The role of HOCl produced by myeloperoxidase in carcinogenesis

    Get PDF
    Myeloid cells (macrophages and neutrophils) infiltrate and synthesize myeloperoxidase (MPO) in sites of inflammation, producing gentotoxicity. In RAW 264.7 macrophages, bacterial lipopolysaccharide (LPS) induces superoxide radical anion, nuclear deformation (nuclear protuberances), MPO synthesis, biomolecule oxidation and cell death. “Freezing” LPS-triggered macrophage activation with the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) prevented cell activation and death. Oxidation of proteins and genomic DNA was also blocked, with formation of protein- and DNA-DMPO nitrone adducts, as analyzed by immuno-spin trapping with a polyclonal anti-DMPO serum. Interestingly, confocal microscopy analysis of these cells showed that MPO, genomic DNA, and DNA-DMPO nitrone adducts co-localized in the nuclear protuberances. These observations, and the fact that DNA is negatively charged and MPO is a cationic protein, suggest a role for uptaken or newly synthesized MPO in oxidative genotoxicity induced by myeloid cells in sites of inflammation. 
In order to understand MPO-induced formation of DNA-centered radicals, we studied DNA-DMPO nitrone adducts in calf thymus DNA treated with micromolar concentrations of hypochlorous acid (HOCl) added as a bolus or generated in situ by the MPO/H2O2/Cl- system in the presence of DMPO. We also investigated DNA-DMPO nitrone adducts inside living cells containing MPO. The cell models we used were: i) human leukemia (HL)-60 cells, which overexpress MPO, ii) RAW 264.7 macrophages activated with LPS (1 ng/ml for 24 h), to induce MPO, and iii) A549 human airway epithelial cells pre-loaded with human MPO. When these cells were activated with the phorbol ester PMA, the number of 6-thioguanine-resistant cells with the hypoxanthine-guanine phosphoribosyl transferase (HRPT) mutation increased. This mutation was prevented by each of the following: the NADPH oxidase inhibitor apocynin; the MPO inhibitors salicylhydroxamic acid and 4-aminobenzoic acid hydrazide; the cell-permeable HOCl scavenger resveratrol; and DMPO, which traps DNA-centered radicals and prevents further oxidation. 
Genomic DNA-centered radicals and further mutagenesis induced by activated myeloid cells in sites of inflammation can be prevented by blocking MPO activity, preventing formation of and/or scavenging HOCl, or trapping DNA-centered radicals. Our findings provide new therapeutic avenues for preventing carcinogenesis induced by infiltration and activation of myeloid cells in sites of inflammation, for example, in the lung exposed to particulate matter. SUPPORTED BY NIEHS 5R00ES015415-03
&#xa
    corecore